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Dynamics of   bright solitons are investigated by the numerical simulation in nonlinear media with varying nonlocality, and 
effects of the varying randomly and periodically nonlocalities on the soliton propagation and interaction are analyzed. The 
strong  nonlocality  is  expanded  as  the fundamental nonlocality and  the second-order nonlocality, and effects of  
the  fundamental nonlocality is different from those of  the second-order nonlocality.  The constant nonlocality stabilizes 
propagation of  the bright soliton  if  the nonlocality is strong enough, and suppresses the interaction. But the varying 
nonlocality leads to disintegration of the bright soliton and enhances the interaction. The effects of  the  varying  
randomly nonlocality strictly depend on the stochastic strength, and the effects  of  the varying  periodically  nonlocality  
become  completely  reliant  on  the  period  length. 
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1. Introduction 
 

Optical solitons in fibers are formed by a balance of 

group dispersion and Kerr non-linearity, and the spatial 

optical soliton is a beam which propagates in a nonlinear 

medium without changing its structure. If this balance can 

be maintained dynamically the soliton exists as a robust 

object withstanding even strong perturbations. Numerical 

simulation and experiments have demonstrated solitons 

can propagate an extended distance without distortion, so 

they maybe become the ideal message carrier in long 

distance communication [1, 2].
  

 

Solitons have been typically considered in the context 

of so-called local nonlinear media , where nonlocality of  

the nonlinearity is a property exhibited by many nonlinear 

optical materials. In such media the refractive index 

change induced by an optical beam in a particular point 

depends solely on the beam intensity in this very point.  

Nonlocality is thus a feature of a large number of 

nonlinear systems leading to novel phenomena of a 

generic nature. For instance, it may promote modulational 

instability in self-defocusing media, and suppress wave 

collapse of multidimensional beams in self-focusing media 

[3~5]. 
 
Stable dark or bright solitons were observed only 

recently in nonlocal  nonlinear  media, and relevant 

recent works cause a renewed interest in this area 

including the interaction between  two  neighboring  

bright solitons. Several reviews on the development of the 

nonlocal spatial solitons have been presented, and their 

rich phenomena and potential applications in 

communication and signal processing were investigated. It 

is shown theoretically that stable spatial bright soliton 

states can exist in self-focused nonlocal media  and 

Gauss-function-like bright soliton states can exist in 

self-focused strongly nonlocal media. Experiments have 

also revealed fundamental  and vortex-ring solitons 

supported by the strong nonlocality, as well as soliton 

steering, and theoretical analyses predict the stabilization 

of other self-trapped modes  [6~9]. 
 
  

Stabilization of localized waves is greatly enhanced in 

nonlocal nonlinear media, and the nonlocality often results 

from certain transport processes. It has been shown that 

nonlocality may affect modulational instability of the 

soliton pulse.  Recent numerical and analytical theoretical 

studies demonstrated both stable and unstable evolution of 

the bright soliton in the nonlocal nonlinear media, and 

show that the nonlocality plays  acrucial  role in  the 

physical  features of  the  bright solitons, such as  the 

modulation  instability. The nonlocality governs the 

diffusion strength of  the refractive index  in the 

nonlocal  nonlinear  material, and the physical features 

exhibited by spatial optical soliton propagation can be 

addressed  in the nonlocal media by Gaussian-shaped 

response and exponential-decay response .   

The practical nonlocal media can be considered as a 

medium with the randomly varying nonlocality that is a 

nonlocal function of the incident field, which is stochastic 

function which fluctuate around its mean value. This 

randomly varying nonlocality induced by a wave with the 

intensity can be presented in path stochastic strength form. 

Interestingly, the response function can also be periodic 

for parametric interaction,  and the nonlocality satisfies 

varying periodically one along the transmission line. The 

varying nonlocality plays  a  crucial  role in  the  

physical  features of  the  bright soliton .  In this paper,  

the effects of  the varying  nonlocality are investigated 

on the soliton propagation and interaction in nonlocal  

nonlinear  media,  and some novel results are obtained. 
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2. Theoretical formula 
 

Media are considered  with nonlinearity that is a 

nonlocal function of  the incident field, the wave-packet 

propagates  along  the  z  axis within the nonlocal 

nonlinear media, and  the envelop of  the wave-packet 

can be described  by  the nonlinear Schrödinger 

equation [9] 
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where u  is normalized wave-packet function. z  and 

x  are distance coordinate and transverse coordinate.   

is  a  material constant,  1   corresponds to the 

self-focusing  media  and 1   corresponds to the 

defocusing  media. 
2

),(),( xzuxzI   is the pulse 

intensity.  The field-intensity dependent change of the 

refractive index is characterized by two normalized 

symmetric response functions )(xR  and )(xL  
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The actual form of  the nonlocal response is 

determined by the details of  the physical process 

responsible for the general nonlocality. For all 

diffusion-type nonlinearities, orientational-type 

nonlinearities, and for the general quadratic nonlinearity 

describing parametric interaction, the response function 

may be Gaussian-shaped response or exponential-decay 

response, such as  )/exp()2( 1  xf  
 

originating from a Lorentzian in the Fourier domain.  For  

instance,   the nonlinear contribution to refractive  

index  )(xn   can  be  given  by  
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where   is the degree of  the general nonlocality,  

which governs the diffusion strength of  the refractive 

index  in the nonlocal  nonlinear  material, and the 

corresponding nonlocality may determine  the  physical  

features  of  the  bright  solitons  in  the  nonlocal  

nonlinear  media 

The strong nonlocality  satisfies the well-known 

general power-law dependence on the incident intensity 

for local models with competing nonlinearities,  the 

response functions  can consider the expression as the 

second-order expansion of  the model, and the  strong  

nonlocality can be calculated through following expansion 

of  the  refractive  index [6] 
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1 xxRx )0(  is the degree of  

the fundamental nonlocality, and 
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2 xxLx )0(  is  the degree of  the 

second-order  nonlocality.  The term  2   is  the 

fourth-order quantification which is much smaller  than 

the term 1  in the general nonlocal case,  but  the term  

2   may  approach or  be  larger  than the term 1  

in  the strong nonlocality , and  effects of  term  2   

on  the soliton  is  not  negligible  compared  with  

the  latter  one [6]. 

The self-focusing  media ( 1 ) are considered 

where stable  bright solitons are observed  recently,  

and substituting  Eq. (3)  into  Eq.(1)  leads to the 

following  evolution  equation  
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The physical features exhibited by spatial optical 

soliton propagation can be addressed  in  the nonlocal  

media , where the nonlocality  satisfies the well-known 

general power-law dependence on the incident intensity 

for local models with competing nonlinearities,  and  is 

induced by a wave with the varying intensity. The more 

realistic approach implies random or periodical behavior 

of  the characteristic parameters in media, and  they are 

considered to fluctuate randomly or periodically around 

their mean values in the focusing  media. Two 

normalized symmetric response functions  ),( xzR  and 

),( xzL  fluctuate  randomly or periodically around their 

mean values along the transmission line.  Although  

Eq.(4)  has a  Hamiltonian structure, it is not exactly 

integrable because of  the inhomogeneity ( nonlocality,  

z , x  dependent coefficient ). Such a behave of  the 

normalized wave-packet function u  may be obtained as  

its response averaged over   the inhomogeneity 

(nonlocality),  which result in path-averaged soliton.  

However, taking a simple average of  the inhomogeneity  

(nonlocality) fails to provide the proper response because  

of  the correlations with  variations of u  and the 

inhomogeneity.  So the effects of the inhomogeneity 

(nonlocality) are  investigated  by   the direct 

numerical simulation to give proper response. In our 

calculation models,  two sorts of  the varying  

nonlocalities  are considered below in the focusing  

media . 
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Nonlocality (a): a medium is  considered  with the 

randomly varying strong nonlocality that is a nonlocal 

function of the incident field, which is stochastic function 

fluctuating around its mean value. This randomly varying 

nonlocality induced by a wave with the pulse intensity 
2

),(),( xzuxzI    can be presented in general  

form: 
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where  )0(  0 A and  )0(  0 B  are the degrees of  

the path-average constant fundamental nonlocality and the 

second-order  nonlocality.      denotes the 

path-average, and )10(   DD  is stochastic strength 

( the standard  deviation )  of  the  varying  

randomly fundamental nonlocality and the second-order  

nonlocality.  

Nonlocality (b) : The response functions can also be 

periodic one along the transmission line for parametric 

interaction,  )/sin(),(   ),,( 0zzxzLxzR   in 

certain regimes of the parameter space and satisfies [10]: 
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where  
0z   is  the  normalized  period length  of  

the  periodically  varying  nonlocality, and the  

effective  standard  deviation of  the  varying  

nonlocality  is  1/2. 

 

 

3. Analysis of the numerical results  

 

From the  evolution  equation (4),  we can see the 

motion equation  for  the bright soliton is the standard 

nonlinear Schrödinger equation  when  there is no the 

nonlocality .  Namely,  the special  case  coincides 

with the optical  bright soliton under  the framework of  

Eq.(4)  without  the  perturbation ( the expanded 

nonlocality). The result means that the  soliton  

propagation  and  interaction  are  modulated  by  

the  expanded  nonlocality .   
We can perform a series of  direct numerical 

simulations for the nonlinear Schrödinger equation (4)  to 

discuss the effects of  the expanded strong  nonlocality  

on  the dynamics  of  the  bright solitons in the  

nonlocal  nonlinear  media.  The incident one-bright 

soliton pulse is )(sec)0 ,( xhzxu  , or the initially 

input three-bright soliton pulses are 

)(sec)(sec)(sec)0 ,(  xhxhxhzxu

,  where   is the separation between two neighboring 

solitons ,  and 10  ( about  6  times of  the 

initial soliton-width )  is used in the below simulation.  

The special relativities are considered as   00 BA  ,  

  00 BA   and   00 BA    in  the  self-focusing  

media .   

Fig. 1 is the normalized soliton intensity  versus  

the propagation distance under the constant nonlocality. 

We can see that the bright soliton can propagate stably a 

very long distance when there is no the nonlocality  

( 0  0, 00  BA  ) . The expanded nonlocality plays an 

important role in the evolution of the soliton in the 

self-focusing media.  For example, the effects  of  the  

foundamental  nonlocality  on  the propagation of  the 

bright soliton is  obvious under the weak nonlocality  

( 0  2, 00  BA  ), and the soliton can not propagate 

stably a long distance. The soliton can not be allowed to 

propagate under the large fundamental nonlocality 

( 0  4, 00  BA  ). The effects become different under 

the raised nonlocality ( 2  4, 00  BA  ) , and the 

strong nonlocality stabilizes the propagation of  the bright 

soliton if  the second-order nonlocality is strong enough . 

The effects of the second-order  nonlocality  may  

distinguish  from  those of  the fundamental 

nonlocality, and the second-order  nonlocality can 

effectively  stabilize the propagation  of  the bright  

soliton ( 4  4, 00  BA ). So the effects of  the 

second-order  nonlocality  on  the  solitons  are  not  

negligible  in  the  media. 
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Fig . 1.   The normalized  one-bright  soliton intensity  versus the propagation distance  under the constant  

nonlocality . (a) 0  ,  0 00  BA ; (b) 0  ,  2 00  BA ; (c)  0  ,  4 00  BA ; (d) 2  ,  2 00  BA ;  

(e) 2  ,  4 00  BA ;  (f) 4 00  BA . 

 

Fig. 2 demonstrates the normalized intensity of  

three-bright solitons  versus the propagation distance 

under the constant nonlocality.  It is well known that 

when initial separation between neighboring solitons is 

larger than five times of  the soliton-width in the general 

soliton system  without the nonlocality, the interaction 

between neighboring solitons can be suppressed 

effectively [1, 11].  We  can  see the three solitons  

can propagate stably a very long distance when there is no 

the nonlocality.  But the three solitons can not propagate 

stably a long distance even if  the separation is larger 

than five times of the initial soliton-width under the weak 

nonlocality  ( 0  2, 00  BA ). The three solitons can 

not allowed to propagate under the large fundamental 

nonlocality ( 0  4, 00  BA ).  The combined role of  

the fundamental nonlocality and the second-order  

nonlocality plays  an  important role in the soliton 

interaction, and the strong nonlocality changes the 

interaction  distance  where  the  interaction distance 

is defined  as  the distance where the timing shifts of the 

neighboring solitons exceed a half  of  their 

soliton-width. The interaction distance strictly depends on  

the fundamental nonlocality ,  the second-order  

nonlocality and the separation  between  two  

neighboring solitons.  For instance, the three solitons  

can propagate stably a very long distance, and interaction  

is suppressed under the expanded strong  nonlocality  

( 4  4, 00  BA )  and the  large separation 

( 10 ).  
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Fig . 2.   The normalized  three-bright  soliton intensity  versus the propagation distance  under the constant  

nonlocality . (a) 0  ,  0 00  BA ; (b) 0  ,  2 00  BA ; (c)  0  ,  4 00  BA ; (d) 2  ,  2 00  BA ;  (e) 

2  ,  4 00  BA ; (f) 4 00  BA  . 

 
Fig. 3  is  the normalized soliton intensity  versus  

the propagation distance under the varying nonlocality (a) 

with different stochastic strength,  and  Fig. 4  is  the 

disintegration distance  versus the stochastic strength.  

The random  modulation with  Gaussian  random 

deviation  is used in magnitude of  the stochastic 

dispersion.  Uniformly distributed random numbers from 

the interval   ( )1  ,1(  )  were used , and 

random numbers are produced by the built-in generator 

Random(x) from the Matlab. Transformation of the 

uniformly distributed random numbers from the interval 

into Gaussian random numbers  with  properties in Eqs. 

(5) is performed using 

 ln2)2sin( 2  D   and 

 ln2)2sin( 2  D  [12].  As usual, an 

average of a several  of  different  sequences for  

random numbers has been used .  We  can  see that the 

nonlocality plays an important role in the evolution of  

the  bright soliton  in the self-focusing media.  For 

example, the constant nonlocality stabilizes propagation of  

the bright soliton  if  the nonlocality is strong enough .  

But the  randomly varying nonlocality leads  to 

disintegration of  the bright soliton  if  the stochastic 

strength is large enough . The  disintegration distance,  

which is defined as the propagation distance until  soliton  

disintegration,  strictly depends on  the stochastic 

strength of the  varying nonlocality. The  varying 

randomly  nonlocality amplifies the fluctuation of  the 

soliton amplitude, and leads  to disintegration of  the 

bright soliton because  the amplified fluctuation of  the 

amplitude causes fluctuation of  the line wave with small 

amplitude.  
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Fig. 3.  The normalized  one-bright  soliton intensity  versus the propagation distance  under the nonlocality 

(a)  with 400  BA . (a) constant  nonlocality; (b) 1.0 D ; (c) 2.0D ; (d) 3.0D ; (e) 4.0D ; 

(f) 5.0D  . 
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Fig. 4. The disintegration distance (interaction distance) 

versus the stochastic strength of the nonlocality (a) with  

A0=B0=4. Solid line : disintegration distance; dashed 

line: interaction distance. 

Fig. 5 demonstrates the normalized  intensity  of  

three  bright   solitons  versus the propagation distance 

with different stochastic strength, and  the interaction 

distance  versus the stochastic strength  is shown  in  

Fig. 4 .  We  can  see  the three solitons can not 

propagate stably a long distance even if  the separation is 

larger than five times of the initial soliton-width ( such as 

10 ) and the nonlocality is strong ( 4  4, 00  BA ) 

under large stochastic strength. The  varying nonlocality  

enhances the interaction, and  reduces the interaction  

distance, which strictly depends on  stochastic strength.  

For instance, the three solitons can propagate stably  

under  the strong  nonlocality ( 4  4, 00  BA ) in 

presence of  the large stochastic strength  ( 5.0D ). 
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Fig. 5. The normalized three-bright soliton intensity versus the propagation distance under the nonlocality (a)  

with  400  BA . (a) constant nonlocality; (b) 1.0 D ; (c) 2.0D ; (d) 3.0D ; (e) 4.0D ; (f) 

5.0D  . 

Fig. 6 is  the normalized soliton intensity  versus 

the propagation distance under the nonlocality (b) , and  

Fig. 7  is  the disintegration distance  versus the period 

length. For the period length 0z ,  three special cases on 

the period length of the varying nonlocality are considered 

as 100 z , 10~0z   and 100 z .  We  can  

see the periodically varying nonlocality  as perturbation 

leads  to soliton disintegration, and the  disintegration 

distance relates  to the period length of the  varying 

nonlocality.  The period length of  the varying 

nonlocality plays an  important role in the soliton 

propagation under  the  nonlocality (b),  there is a 

period length which is called as  the worst period length 

at which the effect of  the periodically varying 

nonlocality  is the largest on soliton propagation,  and  

the corresponding  disintegration distance is the shortest.  

From  the  Figs. 4  and  5  we  can  see  the worst 

period length is about  10.  
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Fig . 6   The normalized  one-bright  soliton intensity  versus the propagation distance  under the nonlocality 

(b)  with  400  BA . (a) constant  nonlocality; (b) 0.1 0 z ; (c) 0.5 0 z ; (d) 0.100 z ; (e) 

0.20 0 z ; (f) 0.400 z  . 
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Fig . 7. The disintegration distance ( interaction distance) 

versus the period length of the nonlocality (b) with  

A0=B0=4. Solid line: disintegration  distance;  dashed  

              line: interaction distance. 

Fig. 8 demonstrates the normalized  intensity  of  

three  bright   solitons  versus the propagation distance  

under the nonlocality (b),  and  the interaction distance  

versus  interaction distance  is  shown  in  Fig. 7 .  

The three solitons may not propagate stably a long 

distance even if  the separation is larger than five times of 

the initial soliton-width ( such as 10 ) and  the 

nonlocality  is  strong ( 4  4, 00  BA ) under the 

varying periodically nonlocality.  The varying 

periodically nonlocality reduces the interaction  distance, 

and the interaction distance strictly depends on  the 

period length.  Also there is a period length which is 

called as  the worst period length at which the effect of  

the periodically varying nonlocality  is the largest on 

soliton interaction,  and  the corresponding  interaction 

distance is the shortest. From  the  Figs. 7  and  8  

the  worst  period  length  is  about  10.  
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Fig. 8. The normalized three-bright soliton intensity versus the propagation distance under the nonlocality (b)  

with  4 00  BA . constant  nonlocality; (b) 0.1 0 z ; (c) 0.5 0 z ; (d) 0.100 z ; (e) 0.20 0 z ; 

(f) 0.400 z . 

 

 The perturbation effects of  the  two varying  

nonlocalities are very different  in the focusing  media.  

From Figs. 3 ~ 8 , we can see that  the effects of  the  

periodically  varying  nonlocality are larger than those  

of  the randomly varying  nonlocality because of  the 

inhomogeneity  effects resulting from the worst period 

length, and the corresponding propagation distance or the 

interaction distance  is  shorter under the same situation 

(the standard  deviation of  the  varying  randomly 

nonlocality equals the  effective  standard  deviation of  

the  varying periodically  nonlocality ) . 

   

 

4. Conclusions 
 

Dynamics of  the  bright  solitons are investigated 

by the numerical simulation  in nonlocal  nonlinear  

media with the varying  nonlocality, and effects of  the 

varying randomly and periodically  nonlocalities  on the 

soliton propagation and interaction  are analyzed. The 

strong  nonlocality  is  expanded  as  the 

fundamental nonlocality and  the second-order 

nonlocality, and the  varying  nonlocality plays a crucial  

role in  the  physical  features of  the  bright solitons. 

The constant nonlocality stabilizes propagation of  the 

bright soliton  if  the nonlocality is strong enough, and 

suppresses the interaction. But the  varying nonlocality  

destroys  the bright soliton dynamics. The effects of  the  

varying  randomly nonlocality strictly depend on the 

stochastic strength, the  nonlocality leads  to 

disintegration of  the soliton  if  the stochastic strength 

is large enough, and enhances the interaction. The effects  
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of  the varying periodically  nonlocality become 

completely reliant on the period length ,  there is a period 

length which is called as  the worst period length at 

which the effect of  the periodically varying nonlocality 

is the largest on soliton propagation or  interaction,  and  

the corresponding  disintegration distance or the 

interaction distance  is the shortest. Under the same 

situation,  the effects of  the  periodically  varying  

nonlocality are larger than those  of  the randomly 

varying  nonlocality because of  the 

inhomogeneity  effects resulting from the worst period 

length,  and the corresponding propagation distance or 

the interaction distance  is  shorter. 
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